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ABSTRACT

In this " ,','liminary study involving advanced CFD codes, an incremental for-

mulat _ known as the "delta" or "'correction'form, is presented for solving

sparse systems of linear equations which are associated with aerody-

ensitivity analysis. For typical problems in 2D, a direct solution method can

be applied to these linear equations in either the standard or the incremental form,

in which case the two are equivalent, lterative methods appear to be needed for

future 3D applications, however, because direct solver methods require much more

computer memory than is currently available. Iterative methods for solving these

equations in the standard form result in certain difficulties, such as ill-conditioning

of the coefficient matrix, which can be overcome when these equations are cast in

the incremental form; these and other benefits are discussed herein. The method-

ology is successfully implemented and tested in 2D using an upwind, cell-centered,

finite volume formulation applied to the thin-layer Navier-Stokes equations. Re-

sults are presented for two laminar sample problems: 1) transonic flow through a

double-throat nozzle, and 2)flow over an isolated airfoil.
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1.0 Introduction

For many complex flow fields of interest in practical engineering problems, accurate detailed

analyses are now possible using supercomputers and advanced software; these codes have been

developed in recent years through an intensive research effort focused in the discipline now

known as Computational Fluid Dynamics (CFD). For these advanced CFD codes to become

more useful as practical design tools, additional software is needed which will efficiently provide

accurate aerodynamic sensitivity derivatives which are consistent with the discrete flow solutions

of the particular CFD code of choice. The theme of this report is the ongoing development of

a methodology for calculating these derivatives.

A sensitivity derivative is defined as the derivative of a system response of interest (e.g.,

the lift or drag of an airfoil) with respect to an independent design variable of interest (e.g., a

parameter which controls the shape of an airfoil). In a typical design environment, a very large

number of analyses are often made in determining the "best" design. An efficient method for

calculating accurate sensitivity derivatives can be applied in several different ways to significantly

reduce the number and/or computational cost of these multiple analyses. This could be critical

for the integration of advanced CFD codes into a systematic design methodology, where the

computational cost of a single flow analysis can be extremely high, particularly in 3D.

One method of a very general yet conceptually simple nature for computing aerodynamic

sensitivity derivatives is the method of "brute force" finite differences. With this method,

assuming forward finite difference approximations are used, the CFD flow analysis code is used

to generate one converged flow solution for a slightly perturbed value of each design variable for

which sensitivity derivatives are required. The principal drawback of this method is clearly that

of computational cost, since the number of flow analyses required in a typical design problem can

be extremely (i.e., prohibitively) large, particulady when the number of design variables is large.

As a typically less costly alternative to the finite difference approach, aerodynamic sensitivity

derivatives can (in principle) be computed by direct differentiation of the governing equations

which control the fluid flow. If the continuous governing equations are differentiated prior to

their numerical discretization, the method is known as the "continuum" approach. In contrast,

if the resulting algebraic equations which model the governing equations are differentiated

following their discretization, the method is known as the "discrete" approach. In developing

efficient methods for computing these sensitivity derivatives and their subsequent application to

aerodynamic design problems, researchers have been and remain active; Refs. 1 through 24 are

a representative (but not exhaustive) sample of articles which are germane to the present effort.

Reference 8 addresses the distinction between the aforementioned "continuum" and "discrete"

approaches, and Ref. 24 is a concurrent study which addresses related issues of specific interest
here.

The present study represents an extension of the recent efforts of Refs. 13 through 23, where

using the discrete approach, fundamental sensitivity equations are derived by direct differentiation

of the system of nonlinear algebraic equations which model either the Euler or thin-layer Navier-

Stokes (TLNS) equations for 2D steady flow. This differentiation results in very large systems

of algebraic linear sensitivity equations which must be solved to obtain these derivatives of

interest. In Refs. 13 through 23, the fundamental sensitivity equations are solved in what is



henceforthreferredto hereinasthe"standard"(i.e.,non-incremental)form. Furthermore,in these
references,adirect solvermethodis appliedto solvetheseequations;thesingleexceptionis Ref.
23, whereahybrid direct solver/conventionaliterativeapproachis _:1optedfor an isolatedairfoil
exampleproblem.Therearesomeimportantadvantagesin usinga _rect methodwhenfeasible;
thesearediscussedin the referencesand also notedin a later sectionof this report. However,
the mostseriousdisadvantageof adirect solvermethodis theextremelylargecomputerstorage
requirement,which for practical3D problemsappearsto bewell beyondthecurrentcapacityof
modemsupercom_uters;this capacitycanevenbe exceededin 2D on very fine grids.

In an effort to circumvent the computer storagelimitation Ibr the direct methods, this
preliminary study focuseson fundamentalalgorithm developmentfor the efficient iterative

solution of the aerodynamic sensitivity equations. That is, the print al motivation and objective

is to d,velop a solid framework in 2t _ from which future extensions to 3D will be feasible. In

gene: one of the most serious difficulties encountered in the development and/or application

of iterative techniques is that of poor overall conditioning and lack of diagonal dominance

in the coefficient matrix. Unfortunately, this is a very common occurrence in the coefficient

matrices of interest here; the severity varies greatly and depends on many factors. This problem

can manifest itself in either poor performance or even complete failure (i.e., divergence) of an

iterative algorithm.

A computationally useful property of the "incremental" form (also commonly known as the

"delta" or "correction" form) can be effectively exploited to combat these problems of poor matrix

_:.:nditioning. This property is that "approximations of convenience" can be introduced into the

coefficient matrix of the equations, without affecting the final converged values of the sensitivity

derivatives. The approximations must be "reasonable" enough that the resulting iterative strategy

is convergent. In contrast, if any approximations are made to the coefficient matrix of the

equations in the standard form, then the computed sensitivity derivatives cannot be consistently

discrete; th_: is, they will not be the correct derivatives of the algebraic equations which are

solved when generating the steady-state flow solution. In the implementation of the incremental

formulation herein, a judiciously selected block-diagonally dominant matrix is introduced as

an approximate ret" :ement for the original ill-conditioned left-hand side coefficient matrix.

The positive impact which this can have on the development of iterative techniques for the

aerodynamic sensitivity equations is discussed herein, and illustrated in the example problems.

Additional benefits which might be derived from this flexible nature of the "delta" formulation

are also discussed.

The remainder of this report is organized as follows. The next section, presentation of theory,

is further subdivided into five subsections which review and discuss: 1) the governing equations,

2) the spatial discretization and implicit formulation, 3) the fundamental sensitivity equations

in standard form, 4) basic linear equation solving in incremental form, and 5) incremental

solution of the equations of sensitivity analysis, where some significant implications of this

formulation compared to the standard form are noted. Following the presentation of theory

section, computational results are presented, illustrating application of the methodology to two

laminar viscous flow example problems: 1) transonic internal flow through a double-throat nozzle

and 2) external flow over an isolated airfoil. The last section is a summary where conclusions

are given. In an appendix, the direction of ongoing and future work is discussed, where sample



resultsare shown from the successfulapplicationof a spatially-splitapproximatelyfactored
strategyfor efficiently solving the sensitivityequationsin incrementalform.

2.0 Presentation of Theory

2.1 Governing Equations

The governing equations in this study are the 2D thin-layer Navier-Stokes (TLNS) equations;

they are

1 0Q
J 0t - R(Q) (1)

where

R(Q) = 0F(Q) _ 0¢(Q______)+ 0Gt'(Q) (2)
0_ 077 0_

Q = [p, pu, pv, peo] T (3)

The vector, R(Q), is known as the residual, and is clearly null for steady flow. The elements of

the vector, Q, are the conserved variables, where, p is density, u and v are velocity components

in Cartesian coordinates, and eo is total energy (i.e., eo = e + u22-_9, where e is the specific

internal energy of the fluid). The inviscid flux vectors, F(Q) and G(Q), are

F(Q) = -_F(Q) + _G(Q)
(4)

A transformation to generalized (_, r/) coordinates from Cartesian (x,y) coordinates has been

made in Eq. (1), where _x, (y, rlx, r/y are "metric" terms, and J is the determinant of the Jacobian

matrix of this transformation. The Cartesian flux vectors, F(Q) and G(Q), are

F(Q) = [pu, pu 2 + p, puv, (peo + p)u] T
(5)

G(Q) = [pv, puv, pv 2 + p, (peo + p)v] T

The pressure, p, is evaluated using the ideal gas law

P = (7- 1) pe0 -p 2 (6)

and 7 is the ratio of specific heats, taken to be 1.4. The thin-layer viscous terms in generalized

coordinates are

Gtvl(Q)= _LeL [gv,,t_v2,gv3,gv, (7)
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where
gVl _ 0

gv2 = OlUr/ "_- 03V_

gv3 = a3U_ + Oe2V _

1 1

= +
a4

+aa(uv)n + Pr(7- 1)(a2)'

--+g-j- , --

7/ y 7/7, + 7/y

O_3 = -- . _ 0_4 -- j

+

(8)

The molecular viscosity is given by /z, Stokes' hypothesis for the bulk viscosity (A =

-2#/3) has been used, a is the speed of sound, Pr is the Prandfl number (taken to be 0.72),

and ReL is the Reynolds number. Nondimensionalization of Eq. (1) is with respect to poo

and Uoo, the freestream density and velocity, respectively. The physical coordinates (x,y) are

nondimensionalized by a reference length, L, and the viscosity is nondimensionalized by #oo, the

molecular viscosity of the freestream. The nondimensional molecular viscosity can be computed

using Sutherland's law and a reference temperature, To_, the static temperature of the freestrearn.

For additional simplicity here, however, the molecular viscosity is taken to be constant, equal

to that of the freestream.

2.2 Spatial Discretization and Implicit Formulation

Computationally, the TLNS equations are solved here in their alternative integral conserva-

tion law form using an upwind cell-centered finite volume formulation (see Refs. 25 through

31), where the residual at each cell is evaluated as a balance of inviscid and viscous fluxes

across cell interfaces. Upwind evaluation of the inviscid fluxes is accomplished by upwind

interpolation of the field variables, Q, from the approximate cell centers to the cell interfaces,

where the flux-vector splitting procedure of van Leer (Ref. 32) is employed. In this study,

third-order accuracy is used for the inviscid flux balance in the streamwise (() and in the normal

(77) directions. The finite volume equivalent of second-order accurate central differences is used

to approximate the thin-layer viscous terms. This results in a higher-order accurate algebraic

approximate representation of the residual at each cell in the domain. When assembled globally

including all cells and boundary condition relationships, this can be expressed as

{R(Q*)} = {0} (9)

where {Q*} is called the "root" (i.e., the steady-state value of the field variables). Therefore, Eq.

(9) represents a large coupled system of nonlinear algebraic equations; thus finding a steadv-state

solution to the TLNS equations has been replaced (approximately) by the problem of i_,ading

the root, {Q*}, of this set of algebraic equations. In Eq. (9) and henceforth, the notation, '{ }',

indicates a global column vector.



The TLNS equationsarediscretizedin time usingtheEuler implicit method,followed by a
Taylor's serieslinearizationof the discreteequationsin time abouttheknown time level. This
resultsin a large systemof linearalgebraicequationsat eachtime step,which is

(10)

{Qn+l} = {Qn} + {nAQ }
n = 1,2,3,...

(11)

Equations (10) and (11) represent the fundamental implicit formulation for integrating the

TLNS equations in time to steady-state. In these equations, 'n' is the time iteration index,

and {nAQ} is the incremental change in the field variables between the known (n th) and the

The matrix, [_tl, is diagonal, and contains the time term. The(nm+lnext )time levels.
I. d

large Jacobian matrix, , is sparse and has a banded structure, with nine diagonals, the

individual elements of _vhich are 4x4 block coefficient matrices. In addition to its use in Eq.

(10) above, this important Jacobian matrix plays another central role in this study, which will

be shown later.

In principle, Eq. (10) can be repeatedly solved directly (using Eq. (11) to update the

field variables), as the solution is advanced to steady-state; for very large time steps, the direct

method represents Newton's root finding procedure for nonlinear equations. The direct method

however is not necessarily the most efficient procedure with respect to overall CPU time (Ref.

33), and the large storage requirements of the method make it infeasible in 3D. Therefore,

more commonly, an iterative algorithm is selected for use in the repeated solution of Eq. (10).

Popular choices of these iterative algorithms include approximate factorization (AF) (Ref. 34),

conventional relaxation algorithms (Refs. 29, 30), the strongly implicit procedure (SIP) (Ref.

35), and preconditioned conjugate gradient methods (Refs. 36, 37), to name a few.

It is noted that Eqs. (10) and (11) are an incremental formulation for solving the nonlinear

problem of Eq. (9). If convergence is achieved, the steady-state solution, {Q*}, only depends

on what is implemented in the discrete formulation of the residual vector on the right-hand side

of Eq. (10). It is also implied that this solution is independent of any approximations which are

made in the coefficient matrix of Eq. (10). The final solution is also independent of the initial

guess, and all transient solutions which are generated prior to convergence.

For typical advanced CFD flow codes which employ the implicit time integration formulation

of Eqs. (10) and (11), the following approximations are often seen in the coefficient matrix of

Eq. (10) (the list is a representative but not exhaustive one):

1) A first-order accurate upwind spatial discretization of the implicit terms is used, even

though a higher-order accurate spatial discretization, either upwind or perhaps even

central "differences" (Ref. 29), is used on the right-hand side of the equation.

2) A consistently linearized treatment of the boundary conditions in "delta" form is typically

neglected. In particular, a fully consistent treatment of the implicit terms resulting from



the"'periodic"boundaryconditionsof "C" and"O" meshesandalsoof the implicit terms
acrossthe zonal interfacesof multiblock grids is not used.

3) Only approximatesolutionsof Eq. (10) areactually generatedat eachtime stepwith
the useof iterativemethods,in orderthat eachtime stepis efficiently completed.

The precedingexamplesand manyothersnot mentionedare "approximationsof convenience"
and are made on the left-hand side of Eq. (10) in order to influence the nature of the
resultingalgorithmwhich is to be usedin finding the solution. Thesemay be introducedfor
computationalsimplicity of implementationor overall efficiency,or both. This flexibility of
the _:!ta formulation, which allows approximationsto be introducedinto the left-hand side
co_ ,entmatrix without influencingthe final solution,canalso beexploitedin the solutionof
the imearaerodynamicsensitivityequations,aswill be seenin subsequentsections.

2.3 Fundamental Sensitivity Equations In Standard Form

ider the vector,/_, whose elements are independent variables, typically called the design

v,_ none, or all of these variables may be related to the geometric shape of the

boundar: _uriace of the flow problem of interest. Computationally, the geometric shape of the

domain is defined by the mesh upon which calculations are made; the complete vector of (x,y)

coordinates which defines the mesh is represented symbolically herein as {X}. For a steady-state

solution, the discrete residual vector given by Eq. (9) is expressed now in the following form

{R(Q*(_),:_(/_),/_)} = {0} (12)

where the explicit dependence of the discrete residual on the computational mesh, {X}, as well

as its exolicit dependence (if any) on/_ has now been emphasized. Direct differentiation of Eq.

(12_ ',, :h respect to _hk, the k m element of }, yields

Term 1 Term 2 Term 3

(13)

Equation (13 '; an exact derivative of the discrete algebraic residual vector; this procedure is

1-, .v-_ in Refs. 2. and 4 as the quasi-analytical method. The Jacobian matrix, /_-_/, of Eq. (13)

:al to that found in the fundamental implicit formulation for numerical time integration
I.=.1

_t:_i. (10)) of the TLNS equations, except that is evaluated at steady-state, {Q*}. It is thus

well understood. The solution vector, , is the sensitivity of the complete vector of field

variables with respect to the k th design variable. The matrix, [_-], is the Jacobian matrix of the

discrete steady-state residual vector with respect to the complete vector of (x,y) grid coordinates;
L--.I

it is documented in detail in Ref. 17. The vector, { _-_, of Term 2, contains what is referred to

here as the grid sensitivity terms; these are the sensitivity derivatives with respect to 3k of each

'x' and 'y' coordinate point of the entire computational mesh. The treatment of the terms of the

grid sensitivity vector is given special consideration in Refs. 18, 23, 38, and 39. The vector,
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{7_'_; _, accounts for derivatives resulting from explicit dependencies (if any) of the residual

vector on ilk, and additional discussion concerning this is found in Ref. 21. In the event that
J

flk is not a design parameter for the geometric shape, then the second term of Eq. (13) will

be zero, since the vector, { _ }, is then null. If flk is a geometric shape design parameter, its

effect on the residual (Eq. (12)) will usually be felt only through the grid, and the final term

of Eq. (13) will generally be zero.

It is strongly emphasized that all boundary condition relationships must be treated in a fully

consistent manner, and included in Eq. (13) above. Proper boundary condition treatment should

be included in the Jacobian matrices, [_Z_] and [b°-_], as well as in the vector, { 7_'_k}. If accurate

results are to be obtained using the present methods, it is critical that this is not neglected here

as it often is in the fundamental implicit time integration formulation (i.e., Eq. (10)). Detailed

documentation on the consistent treatment of the boundary conditions and its importance in

these equations is found in Refs. 21, 22, and 23.

Note that Eq. (13) is a linear system of equations which in principle can be solved directly

for the vector, { _ }. Of course, the solution of Eq. (13)must be repeated for each element of

/_ (i.e., for each design variable) for which sensitivity derivatives are desired. However, a single

LU factorization of the coefficient matrix can be repeatedly reused for multiple solutions (i.e.,

for multiple design variables) in the forward and backward substitution operations. The reuse

of the LU factorization can represent a substantial savings in computational work, particularly

when the linear system of Eq. (13) and/or the number of design variables of interest is large.

J"0--92-} is not the final goal; rather, the sensitivityThe solution of Eq. (13) for the vector, 1, Oak '

derivatives of some specific system responses are sought (e.g., for an airfoil, the sensitivities

of the lift, drag, and moment coefficients might be required). Consider therefore the jth system

response of interest, Cj, which in general can be functionally dependent on the steady-state field

variables, {Q*}, the grid, {X}, and also explicitly on the design variables,/); that is

cj = (14)

The total rate of change of the jth system response, Cj, with respect to the k th design variable,

_k, is then given by

d-_k={0QJ L Oflk J + { OX J l

Term 1 Term 2 Term 3

(15)

where in Eq. (15), Term(s) 2 and/or 3 could be zero, depending on the particular system response

(Cj) and design variable (j3k) of concern. Solution of Eq. (13) therefore provides the vector,

_-/_, which is needed in Eq. (15). Furthermore, for geometric shape sensitivity derivatives,

the grid sensitivity vector, { _ }, of Eq. (13)is reused, if needed, in Eq. (15). Specific ancillary

sensitivity relationships of the type given by Eq. (15) which are used in the present study for

computing sensitivity derivatives of aerodynamic force coefficients are presented in Ref. 23.



On the left-handside of Eq. (15) above,the notationfor a total derivativehasbeenused,
indicating that the total rate of changeof Cj with respectto flk is included in the expression,

and to distinguish it from the partial derivative term (Term 3) on the right-hand side of the

expression. However, it should be understood that this derivative is still a partial derivative

in the sense that Cj is in general a function of multiple independent design variables. For

consistency, this notation will continue to be used throughout.

A closely related alternative procedure for computing sensitivity derivatives, known as the

adjoint variable approach, is easily developed using the relationships presented thus far. This

begins by combining Eqs. (13) and (15) to yield

T3- k=LOQJ 103kJ +LOX. .
OR (16)

The adjoint variable vector, {)_j }, is arbitrary at this point, since the inner product of {/_j} is

taken with the nul._..llvector, from Eq. (13). Thus there is no ne....!tchange from Eq. (15) to Eq.

(16), since the entire additional term on the right-hand side of Eq. (16) is zero, for any and all

{Aj}. Rearranging, Eq. (16) becomes

T

OCj }T

+ OQJ +{Aj _ [O/3kJ

(17)

The necessity of evaluating the vector, {_'}, using Eq. (13)is eliminated for all 3k by

selecting the vector, {Aj}, such that the coefficient of {_} in Eq. (17)is null. That is,

selection of {)_j} which satisfies

OQ J + {)_j "_ = {O}T
(18)

implies

- _ {Aj} = [ OQ J (19)

Therefore, following the solution of Eq. (19) for this particular choice of the adjoint variable

vector, {,_j }, the sensitivity derivatives of Cj with respect to all 3k are computed by

(20)



Solutionof the linear systemof Eq. (19) for {Aj} is analogousto the solution of Eq. (13)

for { _ } in that the respective° " coefficient matrices are transposes of each other. A particular

solution, {Aj}, is valid only for a specific system response, Cj, and thus solution of Eq. (19)

must be repeated for each different system response of interest. If Eq. (19) is solved directly,

however, multiple solutions require only a single LU factorization of the coefficient matrix,

which is repeatedly reused for an unlimited number of right-hand side vectors, "(_ (i.e., for

an unlimited number of different system responses of interest).

It is simple to verify from the preceding equations, and significant to note, that each solution,

_o___ }, of Eq. (13) for a particular design variable can be used for an unlimited number of

different system responses. In contrast, however, each solution, {Aj }, of Eq. (19) for a particular

system response can be used for an unlimited number of different design variables. Therefore,

in terms of computational work, if the number of system responses of interest is larger than

the number of design variables, then sensitivity derivatives should be computed by solving Eq.

(13). Otherwise greater computational efficiency is obtained using the adjoint variable method.

Despite this difference which has been noted between these two closely related procedures, it is

emphasized that the two methods are equivalent in the sense that they yield identical values for

the sensitivity derivatives, if properly implemented computationally.

The significance of the well-known difference in the computational efficiency of the two

methods is mitigated greatly if a direct method is used to solve the linear systems (i.e., either

Eq. (13) or Eq. (19)), because the LU factorization must only be done once for multiple right-

hand side vectors. However, this distinction becomes very important if an iterative strategy is

used to solve these linear systems, particularly if the difference between the number of design

variables and the number of system responses of interest is very large. This difference occurs,

of course, because with iterative methods, the computational work required for solution of each

linear system is approximately equal to the computational work required to solve the first one.

Summarizing briefly, it has been shown that calculating aerodynamic sensitivity derivatives

using the discrete direct differentiation method requires the solution of large linear systems of

equations of the type given by a choice of either Eq. (13) or Eq. (19). Henceforth in this

report, these two systems of linear equations are known as the aerodynamic sensitivity equations

in standard form. Fundamental algorithm development for the iterative solution of one of these

two linear systems is easily extended and applied to the other, since as noted previously, their

respective coefficient matrices are transposes of each other. In the example problems for which

sensitivity derivatives are calculated in a later section, actual implementation and testing of the

methods proposed herein is accomplished using Eq. (13), although the adjoint variable method,

Eq. (19), could also have been used. When the linear aerodynamic sensitivity equations are

solved in standard form, it should be noted that n.__oapproximations can be introduced into any

of the terms, without simultaneously introducing error into the resulting sensitivity derivatives.

In this form, the framework to support the development of iterative methods is thus rigid and

restrictive.

As a consequence of the preceding discussion, for the higher-order accurate upwind spatial

discretization which is selected herein for the flow analysis, a consistent higher-order accurate

upwind spatial discretization including a fully consistent treatment of all boundary conditions is

10



required in the left-hand side coefficient matrix of the sensitivity equations (in standard form).

Furthermore, there is no "time term" added here to enhance each element of the diagonal, as

seen (in contrast) in the implicit time integration formulation of Eq. (10). Unfortunately, the

resulting coefficient matrix in this case is not diagonally dominant (Ref. 29), and consequently

the computational performance of traditional iterative methods for the sensitivity equations in

standard form is expected to be poor, or even fail. If the present methods were applied using a

popular "central difference" discretization of the inviscid terms in the flow solver, the diagonal

dominance of the resulting sensitivity equations would become far worse. Therefore, it is this

particular difficulty (i.e., the lack of a sufficiently strong diagonal) and how it can be overcome

which is of principal concern in the development of the incremental form of the equations in

the following sections.

2.4 Basic Linear Equation Solving in Incremental Form

Consider the linear system of algebraic equations in the general form

[AI{Z*} + {B} = {0} (21)

where {Z*} is the solution vector. In treating the problem of solving Eq. (21), in essence a "root

finding" problem, application of Newton's method (traditionally used in root finding for nonlinear

equations) to the linear problem yields the basic two-step iterative incremental formulation

Step I - ["A]{mAz} = [A]{Z m} + {B} (22)

Step 2 {zm+l} = {zm} + {m/_z} (23)
m = 1,2,3, ....

where 'm' is an iteration index, and {mAz} is the incremental change in the solution from the

known (m th) to the next (mtla+l)iteration level. An initial guess, _Z 1 }, is required to begin

the procedure, which in the present study is taken everywhere as zero. If Newton's method is
k )

applied strictly, the coefficient matrix [A] is equal to the matrix [A], and clearly the two-step

iterative strategy of Eqs. (22) and (23) for the linear problem converges on the first iteration,

for any initial guess. Therefore, in this case, solution of the linear system in the standard form

(Eq. (21)) and solution in the incremental form (Eqs. (22) and (23)) are equivalent.

More generally, however, the matrix [A] is not necessarily equal to the matrix [A]. The

matrix [A] can be any convenient approximation of the matrix [A] with the restriction that [A]

must approximate [A] well enough so that the two-step iterative procedure (Eqs. (22) and (23))

converges (or, at the very least.v, can be forced to converge by including a strategy such as under-

relaxation). Simply stated, [A] should capture the essence of [A]. Furthermore, because the

equations have been cast in "delta" form, the incremental method produces the unique solution

of Eq. (21), {Z* }, if convergent. In this formulation, the purpose of the left-hand side operator

is to drive the right-hand side vector to zero. The final converged solution, {Z ° }, depends only on

the terms on the right-hand side of Eq. (22), and thus it is emphasized here that approximations

to any of these terms, including the matrix [A], will produce erroneous final results.

iI



In principle, the linear system of Eq. (22) can be solved either directly or iteratively, at each

m th iteration level. If a direct method is chosen, only a single LU factorization of the coefficient

matrix, [A], is needed, where the LU factorization is then reused for an unlimited number of

iterations, including when multiple solutions of Eq. (21) are sought for different values of the

vector, {B }. If the coefficient matrix, [A], is too large, an iterative algorithm will be the only

recourse because of computer storage limitations.

With the choice of an iterative algorithm, an "inner" iteration index, 'i', is established at

Step 1 (Eq. (22)), and the iteration cycle over Steps 1 and 2,having index 'm', becomes the

"outer" iteration loop. If the left-hand side coefficient matrix, [A], is diagonally dominant, then

convergence of the iterative method of choice over the index, 'i', is assured for each and every

linear sub-problem at Step 1. In addition, overall convergence_.of the procedure over the outer

index, 'm', is assured if, as discussed previously, the matrix [A] is an adequate approximation

of the matrix [A], and furthermore, if each linear sub-problem at Step 1 is converged to a

sufficiently close tolerance (whatever that tolerance may be).

As a simple example of the preceding discussion, if a conventional relaxation algorithm (one

of many possibilities) is selected, then the matrix, -[A], is divided into two parts; that is

-[A] = [M] + [N] (24)

The iterative incremental strategy becomes

Step l [M]{m'iAz} = [A]{Z m} + {B}- [N]{m'i-IAZ)
(25)

i = 1,2, 3,..., (imax) m

Step 2 {2 m+l} = {Z m} + {m'(imax)mAZ} (26)
m = 1,2,3, ....

where in the above, (imax) m is the number of inner or sub-iterations required to converge the m tb

linear sub-problem at_Step 1 to the desired tolerance. The particular choice of the splitting in Eq.

(24) of the matrix, [A], is made judiciously, such that Eq. (25) can be repeatedly solved very

efficiently in terms of CPU time and computer storage. The most popular choices of the splitting

in Eq. (24) result in either the Jacobi or the Gauss-Seidel algorithms of either the point or the

line relaxation types. The use of the "delta" form line Gauss-Seidel algorithm with an "inner"

and "outer" loop is investigated in Ref. 40 in the solution of the nonlinear 2D flow equations.

2.5 Incremental Solution of the Equations of Sensitivity Analysis

Application of the fundamental incremental formulation for linear equation solving, Eqs (22)

and (23), to the linear system of Eq. (13) for computing aerodynamic sensitivity derivatives,

gives
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Step 1

Step 2

[_](m 6_Q / //0Qm_t : { , }
OQm+ 1

{ Gq/_k } = { 0Qm m^ 0Q /

m = 1,2,3, .....

where

{sm (OQm_ OR = [, d/3k j (29)

where the coefficient matrix [_-q] approximates the matrix L--,[;_r_]'and will be discussed subse-

quently, in greater detail. The vector, {sm(-_7)}, henceforth called the sensitivity residual

vector, represents the total derivative of the discrete (flow analysis) residual vector, Eq. (12),
J

with respect to ilk. From Ecls. (13) and (29), clearly the sensitivity residual vector must be

,1"a__q:.}, of F_,q. (13), which is of course the objectivedriven to zero in order to find the solution, I, aZk

of the incremental strategy of Eqs. (27) and (28). Approximations must no_.!be made to any

terms in the sensitivity residual vector, taking particular care that a consistent treatment of all

boundary conditions is included here, if the converged solution is to yield the correct (i.e., the

consistently discrete) sensitivity derivatives. The final solution at convergence depends only on

the terms of this right-hand side vector.

It is proposed that a first-order accurate upwind spatial discretization of the inviscid terms

is a suitable selection use in the coefficient matrix, /_/' of Eq. (27), as an approximationfor

here to the higher-order accurate upwind discretization of these terms. It is believed intuitively
K--.I

that this approximation will be a successful choice, noting that this selection is also a common

approximation of convenience which is successfully used in the coefficient matrix of the implicit

time integration formulation, Eq. (10). It is most significant to note that by design, in this choice,

the block-diagonal dominance is now obtained and maintained in the left-hand side coefficient

matrix (Ref. 29) of Eq. (27).

In this preliminary study, the feasibility of using this first-order accurate upwind approximate

treatment of the inviscid terms is investigated in the example problems. Of principal concern, of

course, is whether or not this particular approximation yields a sufficiently accurate representation

of these terms so that a convergent method results. However, if the proposed methodology is

successful, as it is found to be in the subsequent example problems, then the door has been opened

for the possible future inclusion of numerous additional "approximations of convenience" in the

left-hand side coefficient matrix. Of particular interest in future studies, of course, would be

some of the same previously noted approximations commonly included in the coefficient matrix

of the implicit formulation for time integration (Eq. (10)) of the flow equations. In other words,

typical existing CFD flow solvers (i.e., those which employ iterative delta form implicit time

integration methods) might be adapted directly for use in solving the linear sensitivity equations.

The feasibility of this proposal is confirmed in the appendix, where sample results are presented

using the well-known spatially-split approximate factorization (AF) (Ref. 34) algorithm.
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In the presentpreliminary examinationof the proposedmethodology,each linear sub-
problem(i.e.,Eq. (27)) is solvedby directLU factorization(followed by forwardandbackward
substitution) using a conventional vectorizedbandedmatrix solver (Ref. 33) which takes
advantageof thefact (in termsof computationalwork andstorage)thatoutsideof thebandwidth,
all of the elementsare zero. A single complete sensitivity analysisrequiresa single LU
factorizationof the coefficientmatrix, which is repeatedlyreusedin the forward andbackward
substitutionsat eachiterationover Eqs. (27) and(28), and for all designvariablesof interest.
Note that the direct solutionof Eq. (27) now requiresonly one-halfof the computerstorage
of that which is requiredin the direct solution of the equationsin standardform, Eq. (13),
sincethe bandwidthof thecoefficientmatrix is cut in half by the useof the first-orderupwind
approximation.In addition,lesscomputationalwork is requiredin theLU factorizationof this
coefficientmatrix, andin the forwardandbackwardsubstitutions(althoughonly a singleback-
solving procedureis requiredper designvariablefor a direct methodappliedto the standard
formulation).

The strategyproposedaboveis describedasa combinediterative/directsolvermethod.It is
felt howeverthat thealgorithmremainsa direct solvermethodin its essentialcharacter,because
despite the "factor of two" reductionin computerstoragerequirements,it remainsinfeasible
for extensionto practical3D flow problems. However,the methodwill enablea significantly
larger problem to be done in 2D. The presentmethodologywill becomepurely iterative in
character(and thus in principle extendableto 3D) when, as illustratedin Eqs. (25) and (26),
an iterative methodreplacesthe presentdirect solutionof eachlinearsub-problemof Eq. (27).
As an examplegiven in the appendix,the AF algorithm is usedto efficiently solve Eq. (27)
approximatelyat eachmth iteration(withoutthe useof sub-iterations),resultingin a convergent
overall method. It is notedthat convergenceof iterativemethodsovereachlinearsub-problem

(i.e, over each"inner loop")is assured,since [_] is block-diagonallydominant.

Finally, it is notedherethat if theadjoint variableformulationfor computingthesensitivity
derivativesis preferred,applicationof the incrementalformulation to the linear systemof Eq.
(19) for computingthe adjoint variablevector, {Aj}, yields

[0R] = {Win (,_?) } (30)
T{mA/_j}

Step 1 - _-_

Step 2 ( )_?+1} = {/_jn } q_ {mA/_j }

m = 1,2,3, .....

(31)

where

{vm(/_?)} = _ {/_J }+ OQJ (32)

_vm (A[ n) }, known here as the adioint variable residual vector, must be driven toThe vector,

zero in order to find the solution, {Aj }, of Eq. (19), which is the objective of the incremental
J

strategy of Eqs. (30) and (31).

14



3.0 Computational Results

Aerodynamic sensitivity derivatives computed using the incremental formulation, Eqs. (27)

and (28), are presented for two laminar example problems, and are compared with the same

results reported in Ref. 23 for the identical example problems. In Ref. 23, these same

sensitivity derivatives were computed using direct solver based methods applied to the standard

formulation of Eq. (13). It is significant to note that at the outset of this study all attempts

to solve these sensitivity equations in standard form using a conventional line Gauss-Seidel

iteration method (Refs. 29, 30) for these two example problems diverged, despite efforts to

force convergence through the use of successive line under-relaxation. This failure is attributed

to the ill-conditioning of the coefficient matrix.

3.1 Internal Flow - Double-Throat Nozzle Problem

The first example problem is that of an internal flow through a double-throat nozzle, where

the flow is accelerated from a Mach number on the inflow boundary of about 0.10, to a Mach

number which exceeds 2.80 at some places on the outflow boundary. The Reynolds number,

REL, is 100, based on a reference length, L, of one-half the height of the nozzle at the smaller of

the two throats. Figure 1 illustrates the geometry and computational grid which is used, and Fig.

2 depicts the Mach contours of the steady-state solution; both of these figures are taken from Ref.

23, where more complete information is given. Other studies have been conducted involving

the numerical computation of flow through the geometry of this nozzle, and are documented in
Refs. 41, 42, and 43.

The geometric shape is defined parametrically using analytical expressions which define the

boundaries (i.e., the walls) of the nozzle. Within these analytical expressions, ten geometric

shape design variables are defined, and hence these ten parameters also define the vector, /3.

These ten design variables,/31 through/31o, the analytical functions which define this geometric
aX

shape, and also the treatment of the grid sensitivity vectors, {_(} through _ )(5"hTg_o}, are fully
explained in Refs. 23 and 43.

In Ref. 23, the sensitivity derivatives were computed (with respect to/3 i through ill0) of

the force coefficients, Cx and Cy; these force coefficients are the integrated (over the lower

surface) pressure and skin frictions coefficients, which have been resolved in the 'x' and 'y"

directions, respectively. In this earlier study, these terms were calculated by direct solution of the

aerodynamic sensitivity equations in standard form (Eq. (13)), where a single LU factorization

was used in the back-solving operations for all ten design variables. Additionally in the previous

work, the accuracy of the calculations was successfully validated using the method of "'brute

force" finite differences, and thus this consistency check is not repeated here.

In Table 1, the sensitivity derivatives of Cx and Cy with respect to the first geometric shape

presented The computed values of "--'__,.,_d-_,_ and {_-_-}design variable,/31, are are presented
f • " .i ....here from the solution 0 me aeroaynamlc sensmwty equataons in incremental form, where

results are given for successively larger reductions in the average global error. Specifically, the

sensitivity derivatives computed using the incremental method are given for a zero, one, two,

three, and four orders-of-magnitude (OM) reduction in the L2 norm of the sensitivity residual

15



vector, Eq. (29), which is also the right-hand-sideof Eq. (27). In addition, the number of

iterations (over the two-step scheme, Eqs. (27) and (28)) which were required to achieve each

of these successive levels of convergence is also included in the table. In the last row of the

table, the results which were obtained by direct solution of the standard form of the equations,

taken from Ref. 23, also are given. Tables 2 through 10 show results similar to those shown

in Table 1, except that sensitivity derivatives of Cx and Cy with respect to/32 through _310,

respectively, are presented.

For this first example problem, from the results presented in these tables, it is verified that the

diagonally dominant first-order accurate upwind spatial discretization of the inviscid terms in the

[_m_R], of Eq. (27)isa sufficiently accurate approximation of the matrix, r___[___j,that thematrix,

iterative Lv'_Jincrementalformulation for solving these equations is convergent. It is noted that these

results were obtained without the use of under-relaxation or any scheme to "force" the method to

converge. The solutions appear to be fairly well converged after only a two OM reduction of the

error, and the first four digits (at least) of these sensitivity derivatives do not change as the error is

reduced from three to four OM. Most importantly, the expected result is noted (as a consistency

check), that the "tightly" converged results obtained using the incremental formulation agree

with the results of Ref. 23 which were obtained using the standard formulation.

Strategy

Used

Incremental Method,

Eqs. (27), (28), (29)

Standard Form, Direct

Solution of Eq. (13)

Error

Reduction

00M*

Number of

Iterations dCx

d_l

-3.877 E+01

dCy

-3.211 E+02

10M 13 -4.934 E+01 -3.024 E+02

20M 20 -4.925 E+O1 -3.024 E+02

30M 27 -4.925 E+01 -3.024 E+02

40M 33 -4.925 E+01 -3.024 E+02

-4.925 E+01N/A N/A -3.024 E+02

Table 1 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, First Design Variable, fli

*OM Refers to the number of Orders-of-Magnitude reduction in the average global error.
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Strategy

Used

Incremental Method,

Eqs. (27), (28), (29)

Standard Form, Direct

Solution of Eq. (13)

Error

Reduction

00M

Number of

Iterations ,K

_2

-4.644 E+02 +2.152 E+OI

10M 8 -4.614 E+02 +1.733 E+01

20M 15 -4.614 E+02 +1.742 E+01

30M 22 -4.614 E+02 +1.741 E+01

40M 33 -4.61 : E+02 +1.741 E+01

-4.614 E+02N/A N/A +1.741 E+01

Table 2 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, Second Design Variable, /32

Strategy

Used

Incremental Method,

Eqs. (27), (28), (29)

Standard Form, Direct

Solution of Eq. (13)

Error

Reduction

00M

Number of

Iterations

+2.343E +02 -3.655 E+01

10M 11 +2.284 E+02 -2.616 E+01

20M 18 +2.284 E+02 -2.625 E+01

30M 24 +2.284 E+02 -2.625 E+01

40M 31 +2.284 E+02 -2.625 E+01

+2.284 E+02N/A N/A -2.625 E+01

Table 3 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, Third Design Variable, /33
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Strategy
Used

IncrementalMethod,
Eqs. (27), (28), (29)

StandardForm,Direct
Solutionof Eq. (13)

Error
Reduction

00M

Numberof
Iterations dCx

-2.694E+04

dCy
d94

+2.213 E+03

10M 10 -2.665 E+04 +1.659 E+03

20M 17 -2.665 E+04 +1.665 E+03

30M 23 -2.665 E+04 +1.664 E+03

40M 31 -2.665 E+04 +1.664 E+03

-2.665 E+04N/A N/A +1.664 E+03

Table 4 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, Fourth Design Variable, /34

Strategy

Used

Incremental Method,

Eqs. (27), (28), (29)

Standard Form, Direct

Solution of Eq. (13)

Error

Reduction

00M

10M

20M

Number of

Iterations

3

6

dCx

d,85

-8.334 E+01

-8.326 E+01

-8.327 E+01

-8.327 E+01

+7.905 E-01

+4.500 E-01

+4.344 E-01

+4.370 E-0130M 26

40M 46 -8.327 E+01 +4.365 E-01

N/A N/A -8,327 E+01 +4.365 E-01

Table 5 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, Fifth Design Variable,/35
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Strategy
Used

IncrementalMethod,
Eqs. (27), (28), (29)

StandardForm,Direct
Solutionof Eq. (13)

Error
Reduction

00M

Number of

Iterations dCx

d/_6

+8.628 E-01

dCy

dfl6

+ 1.421 E+02

10M 9 -3.657 E-02 +1.429 E+02

20M 15 -1.667 E-02 +1.428 E+02

30M 22 -1.368 E-02 +1.428 E+02

40M 31 -1.370 E-02 +1.428 E+02

- 1.370 E-02N/A N/A +1.428 E+02

Table 6 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, Sixth Design Variable, /36

Strategy

Used

Incremental Method,

Eqs. (27), (28), (29)

Standard Form, Direct

Solution of Eq. (13)

Error

Reduction

00M

Number of

Iterations dCx

dfl7

+2.120 E+00

dCy

dfl7

-5.216 E-01

OM 12 +1.444 E+00 -5.873 E+00

20M 18 +1.414 E+00 -5.877 E+00

30M 25 +1.415 E+00 -5.879 E+00

40M 31 +1.415 E+00 -5.879 E+00

+1.415 E+00N/A N/A -5.879 E+00

Table 7 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, Seventh Design Variable,/37
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Strategy
Used

IncrementalMethod,
Eqs. (27), (28), (29)

StandardForm,Direct
Solutionof Eq. (13)

Table 8 - Comparison of

Error

Reduction

Number of

Iterations dCx

dfs

00M 1 -3.415 E-01 +2.353 E+02

10M 15 +6.281 E+00 +2.331 E+02

20M 21 +6.236 E+00 +2.331 E+02

30M 28 +6.236 E+00 +2.331 E+02

40M 33 +6.236 E+00 +2.331 E+02

N/A N/A +6.236 E+00 +2.331 E+02

;ensitivity Derivatives, Incremental and

Standard Methods, Eighth Design Variable, /_s

Strategy

Used

Incremental Method,

Eqs. (27), (28), (29)

Standard Form, Direct

Solution of Eq. (13)

Table 9 - Comparison of

Error

Reduction

00M

10M

20M

30M

40M

N/A

Number of

Iterations

12

18

25

31

N/A

dCx

dfl0

- 1.366 E+00

-2.153 E+00

-2.107 E+00

-2.107 E+00

-2.107 E+00

-2.107 E+00

;ensitivity Derivatives, Incremental and
Standard Methods, Ninth Design Variable, f19

dCy

-2.382 E+01

-2.082 E+O1

-2.082 E+O1

-2.081 E+01

-2.081 E+01

-2.081 E+01
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Strategy
Used

IncrementalMethod,
Eqs. (27), (28), (29)

StandardForm,Direct
Solutionof _. (13)

Error
Reduction

00M

Numberof
Iterations dCx

d31o
+9.750E-02

dCy
dfllo

+1.144E+01

10M 7 +3.988E-01 +1.157E+01

20M 13 +3.903E-01 +1.158E+01

30M 20 +3.886E-01 +1.158E+01

40M 26 +3.886E-01 +1.158E+01

+3.886E-01N/A N/A +1.158E+01

Table 10 - (_:>mparisonof Sensitivity Derivatives, Incremental
and Standard Methods, Tenth Design Variable, fllo

Table11showsa comparisonof total CPUtimes,wherenaturallythecomputationalcostof
the incrementalmethoddependsheavilyon the"strictness"of thedesiredconvergencetolerance.
For only a two OM error reduction,thecomputationalcost of the incrementalandthe standard
formulationsareapproximatelyequal.However,a tightly converged(four OM error reduction)
solutionresultsin a factor of almosttwo greatercomputationalcostfor the incrementalmethod
in the presentexampleproblem.

Strategy
Used

IncrementalMethod,
Eqs. (27), (28), (29)

StandardForm,Direct
Solutionof Eq. (13)

Error
Reduction

00M

CPU Time
(Seconds)*

27

10M 51

20M 68

30M 90

40M 113

N/A 66

Table 11 - Comparison of Total CPU Times, Incremental and StandardMethods
*All Calculations Performed on a Cray-2 Computer.
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It is notedthat the sensitivity derivativespresentedin the first row of Tables 1 through
10 (i.e., for a zeroOM error reduction,which is oneiteration of the incrementalmethod)are
exactly the valueswhich would be computedby direct solutionof the standardformulation,if

side coefficientmatrix, F_-_l'of Eq. (13)were approximatedusingthe matrix,the left-hand

L_ll!s By comparisonof thesecalculationsin the first row with thosein the last row of the(i.e., the actualresultsof the standardformulation), the significanterror is seenwhich
would begeneratedin the sensitivityderivativesif approximationsof conveniencesuchasthis
were introducedinto the standardformulationof the equations.

3.2 External Flow - NACA 4-Digit Airfoil Problem

The second problem considered here is that of external flow over an isolated airfoil, and is

identical to the second example problem of Ref. 23. There pertinent details are found, including

the grid and boundary conditions used, as well as an explanation of the special treatment for the

grid sensitivity terms. The numerical solution of this laminar flow problem is for a freestream

Much number, Moo = 0.70, Reynolds number, REL = 5000, and angle of attack a = 0.0 °. The

airfoil shape is the NACA 2412, where the profile is defined by polynomial expressions in terms

of three parameters, which are maximum thickness, T--0.12, maximum camber, C=0.02, and

location of maximum camber, L=0.40. These three parameters are defined here to be the design

variables, and hence define the elements of the vector, 3.

In Ref. 23, sensitivity derivatives were computed (with respect to T, C, and L) for the

lift (CL) and drag (CD) coefficients. These terms were calculated in this earlier work using a

hybrid direct solver/conventional iterative approach in the solution of the sensitivity equations

in standard form (Eq. (13)). That is, a single direct LU factorization was applied to the central

bandwidth of the coefficient matrix; the relatively small number of implicit terms which fall

outside this main bandwidth (some at extreme distances because of the "periodic" boundary

conditions at the "wake-cut" of the C-mesh) were treated "explicitly," i.e., on the right-hand side

of the equations. Thus a conventional Richardson iterative cycle was established to account for

the periodic boundary conditions. However, despite the relatively small number of terms which

were treated explicitly, it was reported that because of the required use of the poorly conditioned

higher-order accurate coefficient matrix, the iterative strategy was at first divergent, and the use

of under-relaxation was necessary to force the procedure to converge. As in the first example

problem, the accuracy of the final results was successfully verified in this earlier work by finite

differences, and thus this consistency check is omitted here.

In the present application of the incremental strategy to this identical airfoil problem,r_-2_1 the

elements falling outside the central bandwidth of the left-hand coefficient side matrix, [_7"_J, were

simply neglected entirely. This of course constitutes the inclusion of a second approximation

of convenience in this matrix, in addition to the first-order accurate upwind treatment of the

inviscid terms. The analogous (but not identical) terms resulting from the C-mesh type periodic

in the matrix, [_7_], are not and must not be neglected on the right-handboundary conditions

side of Eq. (27), if the final sensitivity derivatives are to be correct. However, the treatment
L_d'

of these periodic terms is explicit and straightforward since they are on the right-hand side of
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theequations.The resultingincrementalstrategyis againfound to beconvergentin thepresent
exampleproblem,with _,.rtheneedfor under-relaxationor anyschemeto forcetheconvergence.
As in thefirst examph :::oblem, the method is implemented by a single direct LU factorization

coefficient matrix, or}], which is repeatedly reused in all subsequent back-of the approximate [_-

solving operations, for all iterations and _es_gn, variables.
I.

Table 12 shows the computed sensitivity derivatives of CL and CD with respect to /31 =

T, _":_rsuccessively larger reductions in the error, where the results of the present incremental

formulation are compared with the results for the standard formulation, taken from Ref. 23.

Tables 13 and 14 provide similar results except that derivatives with respect to/32 = C and/33

= L, respectively, are computed. Note that in these tables, the convergence of each method

is fairly good after a two OM reduction in the error, and excellent after three or four OM.

In addition, the converged results of the standard and incremental formulations are seen to

consistently agree with one another, as expected. Table 15 presents the number of iterations

required to achieve each level of error reduction, for each design variable, where the incremental

and standard formulations are compared. Finally, Table 16 compares the total CPU times which

were required in the calculations using the incremental and standard forms. For the present

problem, the incremental method is seen to be more efficient.

Error

Reduction

Lift Sensitivity

dCL dCL

d/31 dT

Drag Sensitivity

dCD dCD

d/31 dT

Standard Incremental Standard Incremental

00M -9.334 E-01 -2.467 E-01 +4.723 E-01 +1.226 E+00

10M -2.589 E+00 -2.939 E+00 +4.267 E-01 +4.353 E-01

20M -3.117 E+00 -3.126 E+00 +3.972 E-01 +3.938 E-01

3 OM -3.126 E+00 -3.126 E+00 +3.939 E-01 +3.938 E-01

4 OM -3.126 E+00 -3.126 E+00 +3.938 E-01 +3.938 E-01

Tabk 12 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, fll = T (Maximum Thickness)
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Error

Reduction

0 OM

10M +4.175

2 OM +3.988

30M +3.968

40M +3.968

Table 13 - Comparison of

and Standard Methods, _z

Lift Sensitivity

dCL dCL

d/_2 dC

Drag Sensitivity

dCD dCD

dB2 dC

Standard Incremental Standard Incremental

+5.206 E+00 +4.706 E+00 +3.429 E-01 +6.778 E-01

E+00 +2.973 E+00

+3.976 E+00

+3.780 E-01

+3.663 E-01E+00

+3.785 E-01

+3.640 E-01

E+00 +3.968 E+00 +3.603 E-01 +3.603 E-01

E+00 +3.968 E+00 +3.603 E-01 +3.603 E-01

Sensitivity Derivatives, Incremental

= C (Maximum Camber)

Error

Reduction

Lift Sensitivity

dCL dCL

dfl3 dL

Drag Sensitivity

dCD dCD

dfl3 dL

Standard Incremental Standard Incremental

00M -4.293 E-02 -8.869 E-02 -3.899 E-03 -5.195 E-03

10M -1.466 E-02 -1.745 E-01 -3.422 E-03 -3.017 E-03

20M -1.869 E-02 -1.833 E-02 -3.334 E-03 -3.320 E-03

30M -1.819 E-02 -1.816 E-02 -3.304 E-03 -3.295 E-03

40M -1.816 E-02 -1.816 E-02 -3.290 E-03 -3.290 E-03

Table 14 - Comparison of Sensitivity Derivatives, Incremental and

Standard Methods, _3 = L (Location Of Maximum Camber)
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Error Number of Iterations Number of Iterations

Reduction Standard Incremental

L L

00M 1 1

10M 5 9

20M 24 32

30M 49 91

40M

T C

1 1

13 14

64 39

219 188

300 276 195

T C

1 1

12 14

136 45

239 203

297 269 225

Table 15 - '_umber of Iterations Required, Incremental and Standard Methods

Error

Reduction

00M

10M

20M

30M

40M

Table 16 - A Comparison

Total CPU Time

Standard

27

33

54

124

191

(Seconds)

Incremental

10

15

41

89

127

of Total CPU Times, Incremental and Standard Methods

4.0 Summary and Conclusions

It has been shown herein that for the future development and application of efficient iterative

methods for solving the aerodynamic sensitivity equations, there are significant advantages which

can be exploited within the incremental formulation which are not seen in the standard form

of these equations. These benefits are derived from the flexibility of the "delta" formulation,

which allows any convenient approximation to be introduced into the left-hand side coefficient

matrix (which operates on the "delta terms") without affecting the final computed values of

the sensitivity derivatives, provided the resulting sequence of successive iterations which are

generated converges. Future efforts in algorithm development can now be directed at solving the

sensitivity equations in delta form using conventional iterative strategies which are commonly

employed in solving _e nonlinear flow equations. The goal is to adapt existing CFD flow solvers

in 2D and 3D with few or no changes to also solve the equations of aerodynamic sensitivity

analysis. In this regard, preliminary results obtained to date are encouraging; in the appendix the

feasibility of this proposal is confirmed in the example problems using a fully iterative solution

process.
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6.0 Appendix - Future Work, An Approximately Factored Method

Having developed and successfully demonstrated an incremental formulation which is flex-

ible in character for solving the sensitivity equations, future work in algorithm development for

the iterative solution of these equations will seek to adapt iterative strategies which are com-

monly used in the implicit time integration of the flow equations. To this end, a false time term,

which is the diagonal matrix, ]3_--f_t],is added to the left-hand side coefficient matrix, [_P--_], of

Eq. (27). This "time" term diagonal matrix is of course found in the implicit time integration
K J

formulation of Eq. (10).

The addition of this false time term to each element on the diagonal of the coefficient matrix

in Eq. (27) is equivalent to the use of under-relaxation in the two-step incremental formulation

of Eqs. (27) and (28). Then, for small to moderate time steps, the resulting linear system of

Eq. (27) may be very efficiently solved (approximately) at each iteration (i.e., at each false time

step) using the spatially-split approximate factorization algorithm (AF) of Ref. 34. This basic

algorithm, which has many variations, is well known as a common strategy found in 2D and 3D

CFD flow codes for the efficient approximate solution of Eq. (10) at each time step.

With the introduction of the false time term to the elements on the diagonal, and the resulting

factorization error which is associated with the AF algorithm at each iteration (all in addition

to the error of the approximate first-order accurate upwind treatment of the inviscid terms), it

was not known a priori whether the resulting approximate coefficient matrix operator on the

left-hand side of Eq. (27) would be a convergent method for solving these equations. However,

the proposed AF strategy has been found to be convergent in application to the two previously

explained example problems of this study. That is, the algorithm was successfully used to

produce a four OM reduction in the average error (as defined previously) for the double-throat

nozzle problem and the airfoil problem.

Using a constant Courant number of 10 for each cell in the computational grid (i.e., using

local false "time-stepping"), for the double-throat nozzle example, Table 17 shows the computed

sensitivity derivatives of Cx and Cy (along the lower wall) with respect to fll through 810,

following the four OM reduction in the average error, where the number of iterations required

by this algorithm to achieve this level of convergence is reported for each design variable. As

expected, these results shown here agree very well with those reported earlier for this example

problem, except some of the very small sensitivity derivatives show minor discrepancies which

prove to disappear when the AF method is used to reduce the error to a stricter tolerance than
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thefour OM shownhere.Table 18presentsa comparisonof thetotal CPUtime requiredin this
exampleusingthe AF methodcomparedto theCPUtimesshownearlierfor theothermethods.

Design Numberof Sensitivity Sensitivity
Variable Iterations of Cx of Cy

fll 335 -4.926 E+01 -3.024 E+02

t2 277 -4.614 E+02 +1.741 E+01

_3 242 +2.284 E+02 -2.625 E+01

_4 276 -2.665 E+04 +1.664 E+03

_5 259 -8.327 E+01 +4.370 E-01

_6 278 -1.778 E-02 +1.428 E+02

_7 225 +1.414 E+00 -5.881 E+00

¢_8 317 +6.233 E+00 +2.331 E+02

t9 280 -2.109 E+00 -2.081 E+01

_1o 243 +3.881 E-01 +1.158 E+01

Table 17 - Double-Throat Nozzle Problem, Approximately Factored

(AF) Incremental Method, Four OM Error Reduction

Strategy

Used

Incremental, AF

Solver, (40M)

Incremental, Direct

Solver (40M)

Standard Form,

Direct Solution

Total CPU Time

(Seconds)

144

113

66

Table 18 - Double-Throat Nozzle Problem, Comparison of Total CPU Times
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Using aconstantCourantnumberfor eachcell of 20 for theairfoil problem,Table 19shows
the computedsensitivityderivativesof CLandCD with respectto T, C, andL, andthe number
of iterationsrequiredby the AF methodarealso given. As expected,the computedsensitivity
derivativesherearein excellentagreementwith thosereportedpreviouslyfor this problem.Table
20 is a summaryof thetotal CPUtimesrequiredin thisexample,comparingthepresentmethod
with the previously presentedresults.

Design
Variable

T

Numberof
Iterations

466

dCL
dT, C, L

-3.126E+00

dCD
dT, C, L

+3.938E-01

C 428 +3.968E+00 +3.603E-01

L 360 -1.816E-02 -3.290E-03

Table 19 - NACA 2412 Airfoil Problem, Approximately Factored
(AF) Incremental Method, Four OM Error Reduction

Strategy
Used

Incremental,AF
Solver,(40M)

Incremental,Direct
Solver(40M)

StandardForm,Hybrid
Direct/Iterative(40M)

TotalCPUTime
(Seconds)

50

127

191

Table 20 - NACA 2412 Airfoil Problem, Comparison of Total CPU Times

The precedingresultsare encouraging,and demonstratethe feasibility of the proposed
methods. Much work remains in selectingand refining the most efficient algorithms and
convergenceaccelerationsmethods(suchas multigrid, for example) for use in the solution
of the aerodynamicsensitivity equationsin 2D and 3D.
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Fig. (1)- Computational Mesh, 171x38 Points,

Geometry of The Double-Throat Nozzle Problem.

/

Fig. (2) - Mach Contours For The Double-Throat Nozzle Problem.
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